
Cognition 158 (2017) 81–89
Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier .com/locate /COGNIT
Original Articles
Physical attraction to reliable, low variability nervous systems:
Reaction time variability predicts attractiveness
http://dx.doi.org/10.1016/j.cognition.2016.10.012
0010-0277/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: r.ramsey@bangor.ac.uk (R. Ramsey).
Emily E. Butler a,b, Christopher W.N. Saville b,c, Robert Ward b, Richard Ramsey b,⇑
aNuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
bWales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, Gwynedd, Wales, UK
cUniversity Hospital for Child and Adolescent Psychiatry, University of Freiburg, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 December 2015
Revised 11 October 2016
Accepted 25 October 2016
Available online 2 November 2016

Keywords:
Face perception
Attractiveness
Reaction time variability
Central nervous system
The human face cues a range of important fitness information, which guides mate selection towards
desirable others. Given humans’ high investment in the central nervous system (CNS), cues to CNS
function should be especially important in social selection. We tested if facial attractiveness preferences
are sensitive to the reliability of human nervous system function. Several decades of research suggest an
operational measure for CNS reliability is reaction time variability, which is measured by standard devi-
ation of reaction times across trials. Across two experiments, we show that low reaction time variability
is associated with facial attractiveness. Moreover, variability in performance made a unique contribution
to attractiveness judgements above and beyond both physical health and sex-typicality judgements,
which have previously been associated with perceptions of attractiveness. In a third experiment, we
empirically estimated the distribution of attractiveness preferences expected by chance and show that
the size and direction of our results in Experiments 1 and 2 are statistically unlikely without reference
to reaction time variability. We conclude that an operating characteristic of the human nervous system,
reliability of information processing, is signalled to others through facial appearance.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Theories of mate selection emphasise the role of attractiveness
preferences for guiding mate-choice towards high fitness partners.
Specifically, traits that are associated with high fitness should be
attractive to potential mates because they offer advantages to a
partner as well as to future offspring (Gangestad & Scheyd, 2005;
Rhodes, 2006). In humans, facial attractiveness preferences have
been repeatedly shown to reflect aspects of mate quality. For
example, facial symmetry is attractive and indicative of develop-
mental stability and resilience (Simmons, Rhodes, Peters, &
Koehler, 2004) and certain levels of facial colouration are attractive
and denote healthy blood oxygenation (Stephen, Coetzee, Smith, &
Perrett, 2009). The human face thus reflects a range of important
fitness information. Given humans’ high investment in the central
nervous system (CNS), we would predict that cues to CNS function
would be especially important in mate selection. To date, however,
there is no evidence that facial appearance specifically reflects the
reliability of the CNS; that is, the degree to which the nervous
system functions in a consistent manner. Although consistency of
behaviour would cue CNS reliability, appearance cues would offer
the advantages of rapid assessment for observers as well as rapid
signalling for high-fitness senders. We therefore tested if facial
attractiveness preferences are sensitive to the reliability of human
nervous system function.

A reliable information processor will produce relatively invari-
ant outputs for a specified input (Shannon, 1948). One important
constraint on the reliability of an information processor is the
amount of endogenous noise. Endogenous noise can be defined
as the amount of unpredictable fluctuation across processing
operations within a system. Increasing amounts of endogenous
noise eventually become an enemy of reliable information process-
ing (Faisal, Selen, &Wolpert, 2008; Shannon, 1948). In other words,
given a repeated input, low noise systems will be reliable, in the
sense of producing invariant output. In contrast, high noise
systems will produce more variable outputs. We hypothesised that
if facial appearance reflects CNS reliability, then facial attractive-
ness should be correlated with the variability of behavioural
outputs.

Interest in understanding variability within individuals is not
new (Thouless, 1936; Woodrow, 1932), but it has not been widely
acknowledged. Over 50 years ago, Fiske and Rice (1955) conducted
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a systematic review showing that within-person variability – fluc-
tuation in performance across trials or sessions – is not random,
but stable, and provides an enduring marker of underlying func-
tion. As we describe below, the stable nature of within-person vari-
ability and its functional importance have been further supported
in the following decades (MacDonald, Nyberg, & Backman, 2006),
and is now most frequently assessed by standard deviation in reac-
tion time (RT) across multiple trials (Li, Huxhold, & Schmiedek,
2004). Under this view, rather than reflecting measurement error
that should be ignored, consistency of performance is predictive
of psychophysiological function (Fiske & Rice, 1955; Thouless,
1936).

Using a variety of RT tasks, evidence has accumulated across
cognitive, neurobiological, behavioural and health levels to
demonstrate that increased RT variability is associated with
reduced functional capacity of the CNS (MacDonald et al., 2006).
At a cognitive level, reduced working memory, attention regula-
tion, inhibition, and processing speed have been associated with
RT variability (Kofler et al., 2013). At a neurobiological level, higher
variability is associated with reduced structural and functional
integrity of large-scale brain networks (MacDonald, Li, &
Backman, 2009), as well as altered neurotransmitter function (Li
& Rieckmann, 2014). In terms of health outcomes, RT variability
predicts long-term mental and physical health with healthier indi-
viduals showing more consistent performance and those in a dis-
eased state fluctuating more (MacDonald, Hultsch, & Dixon,
2008; MacDonald et al., 2006). Also, as human biology deteriorates
in older age, performance on a range of tasks becomes more vari-
able (Li et al., 2004). In sum, cognitive and neurobiological systems
are more intact, efficient and healthy in individuals with more con-
sistent performance and compromised in individuals with more
varied performance. In addition, reaction time variability and its
neural underpinnings have been shown to be heritable, using both
quantitative (McLoughlin, Palmer, Rijsdijk, & Makeig, 2014) and
molecular genetic approaches (Saville et al., 2014, 2015). In sum,
a wealth of evidence from a range of methods supports the impor-
tance of processing reliability, as assessed by RT variability, as an
important correlate to cognitive, neural, and health-related mea-
sures. Consequently, a mate-choice preference for low variability
would produce indirect benefits through connection to a high-
fitness partner.

Although the cognitive, neural and health correlates of RT vari-
ability are becoming clearer, the relationship between RT variabil-
ity and social signalling remains unknown. Given the large
investment of the human species in CNS operation, perceptible
cues to CNS function would be expected to be identified and
exploited. In particular, we predicted that any visual correlates to
CNS reliability should be perceived as attractive. To test whether
CNS reliability is visible and attractive, we created composite
images from a dataset of 230 individuals who had a headshot
photo taken and completed an RT task, which involved raising
one of two fingers in response to numerical cues (Fig. 1A). In our
first experiment, composite images were made of the 15 individu-
als from the dataset with the most variable (highest standard devi-
ation of reaction time, SDRT) and least variable (lowest SDRT)
latency distributions, for men and women separately. These com-
posite images were shown to a new set of observers who were
asked to pick which was more attractive and give an attractiveness
rating for each face (Fig. 1B). We measured how frequently low
SDRT faces were chosen as more attractive than high SDRT faces,
as well as the difference in attractiveness ratings between low
and high SDRT faces. If nervous system reliability is signalled
through the face, then attractiveness judgments should be associ-
ated with low RT variability.
2. Experiment 1

2.1. Method

2.1.1. Participants
58 participants (29 female, Mage = 20.3 years, SD = 3.2) took part

in the experiment. All participants had normal or corrected-to-
normal vision and provided written informed consent prior to data
collection. The data reported here were obtained under approval
from the Research Ethics and Governance Committee of the School
of Psychology at Bangor University. One participant completed the
discrimination task but not the ratings task (see below for task
details). Thus, 57 participants were included in the analysis of rat-
ings data (28 female, Mage = 20.3 years, SD = 3.3).
2.1.2. Stimuli
In total, four composite images of faces were used (see Fig. 1).

Based on prior research (Kramer & Ward, 2010; Penton-Voak,
Pound, Little, & Perrett, 2006), 15 individual face images were ‘‘av-
eraged” using a software package that enables multiple individual
faces to be combined into one average face (JPyschomorph;
Tiddeman, Burt, & Perrett, 2001). Separately for males and females,
the composite images comprised face images from 15 individuals
with the highest SDRT and lowest SDRT. SDRT was measured from
a sample of 230 participants performing a cognitive control task
(for full details, see Butler, Ward, & Ramsey, 2015).

The cognitive control task was developed by Brass et al.
(2000) and requires participants to hold down two keys on a
computer keyboard and lift one finger in response to a number
cue, as quickly and accurately as possible. Simultaneously partic-
ipants observe a congruent or an incongruent finger movement.
Differences between congruent and incongruent conditions were
not relevant to the current study and are reported elsewhere
(Butler et al., 2015). As such, SDRT is calculated across all 60 tri-
als. Importantly, reaction time variability is a relatively stable
construct, which has been shown to have good test-retest and
odd-even reliability metrics (Saville et al., 2011). In addition, fac-
tor analytic approaches have shown that single factor solutions
have normally been adequate to summarise reaction time vari-
ability across a number of tasks (Saville et al., 2012;
Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007). Thus,
it is likely that the task used here would yield comparable mea-
sures of reaction time variability to most other conventional
reaction time tasks.

To calculate SDRT scores in order to make the stimuli for the
current study, we first excluded participants who were <50% accu-
rate for either condition. We then excluded trials where RT was
<100 ms, or >1500 ms, as Ratcliff (1993) showed that this
improved power to detect changes in the tau component of the
ex-Gaussian distribution, which has been shown to be highly cor-
related with SDRT (Saville et al., 2011). This led to the exclusion of
less than half a percent of the overall number of RTs. Finally, we
computed standard deviations for congruent trials and incongru-
ent trials separately and took a mean of these so that each partic-
ipant had one average SDRT score. Individuals were then ranked
according to SDRT. Separate rank orders were produced for males
and females in order to generate separate male and female com-
posite images. Face images of the 15 individuals with the lowest
SDRTs were then combined into a composite image (low SDRT).
The same process was followed using the 15 individuals with the
highest SDRTs (high SDRT). The age range of included individuals
was narrow for female (low SDRT: 18–27; high SDRT: 18–26)
and male composites (low SDRT: 18–26; high SDRT: 18–22) and
did not differ between low and high composites (female mean



Fig. 1. Stimuli and tasks. (A) Stimuli were generated from data collected from 230 individuals, each of whom had a photo taken (headshot, hair pinned back, makeup and
jewellery removed), before completing a computer-based reaction time task. For each individual, intra-individual (within-person) variability in RTs was calculated using
standard deviation in RT across trials (SDRT). Participants were ranked from least variable to most variable. Photographs of the 15 individuals with the biggest SDRT were
morphed into one composite image (high SDRT). The same procedure was carried out with photographs from the 15 individual’s with the smallest SDRT across trials (low
SDRT). These composite images were then used in subsequent tasks. (B) Judgements of composite images were measured using two different tasks. A forced-choice
discrimination task asked participants to choose which of two images matched a statement best. By contrast, a ratings task showed one composite image per trial and asked
participants to what extent they agreed on a 1–9 scale with the statement.
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difference 0.78 years [�1.20, 2.76],1 male mean difference
0.93 years [�0.62, 2.49]).
1 Consistent with the American Psychological Association’s Publication Manual (6th
edition), square brackets denote lower and upper bounds of 95% Confidence Intervals.
2.1.3. Procedure and judgment tasks
To measure perceptions of attractiveness, a discrimination task

and a ratings task were used (see below for task details). In addi-
tion, because more attractive faces are typically perceived to be
physically healthier (Cunningham, 1986; Grammer & Thornhill,
1994) and more sex-typical, at least for women (Perrett et al.,
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1998; Rhodes, Hickford, & Jeffery, 2000), we also assessed judg-
ments of physical health and sex-typicality with the same two
tasks. For full reporting and transparency (Simmons, Nelson, &
Simonsohn, 2011), participants performed further ratings on these
faces as part of a different line of enquiry.2 All participants first
completed the rating task and then the discrimination task. Within
each task, each trial was shown once in a random order.

The discrimination task involved a two-alternative forced-
choice task, where participants were presented with high and
low SDRT composite faces (male and female versions were pre-
sented across different trials). Underneath the pair of composite
images, participants were presented with a statement. The task
was to choose which of the faces best represented this statement.
Participants were instructed that they were under no time con-
straint to answer but that they should try to use their ‘‘gut
instinct”. A single item ‘‘Is attractive” was used to assess attractive-
ness judgements. For physical health judgements, four items were
used from the Short-Form 12-Item Health Survey, which assesses
physical health (Ware, Kosinski, & Keller, 1996). An example phys-
ical health statement is ‘‘Finds it easy to climb the stairs”. For sex-
typicality judgments, participants responded to a single item ‘‘Is
sex-typical - looks more masculine if a man, and more feminine
if a woman”. Therefore, there were 6 statements of interest (one
for attractiveness, one for sex-typicality and four for physical
health statements). Each statement was presented with the male
and female face pairs for a total of 12 trials.

On each trial, a fixation cross was shown for 500 ms followed by
presentation of a face pair and statement, which remained on
screen until the participants made their response. Participants
responded by pressing the ‘n’ key for the left face and the ‘m’ key
of the right face. The high and low SDRT faces were randomly pre-
sented on the left and the right of the screen, and statement order
was randomised for each participant.

For the ratings task, on each trial, participants saw a fixation
cross for 500 ms followed by a single face image in the centre of
the screen with a statement and the rating scale underneath. Par-
ticipants were asked to rate how well the statement described the
face, and were again told that there was no time constraint but that
they should try to use their ‘‘gut instinct”. For ratings of physical
health and attractiveness, the scale was from 1 = strongly disagree
to 9 = strongly agree, and for the sex-typicality ratings, the scale
was from 1 = masculine to 9 = feminine. For sex-typicality judg-
ments of male faces, ratings were reverse-scored so that higher
scores reflect greater sex-typicality. The statements used were
identical to those used in the discrimination task. Each face was
presented with each statement once, which means there were 24
trials in total. The face, statement, and rating scale remained on
screen until participants made their response.
2.1.4. Data analysis
For the discrimination task, the percentage that the low SDRT

face was picked as being more attractive, sex-typical or physically
healthy was calculated. For each measure, a group mean for the
sample was calculated. Deviation from chance performance
(50%), would suggest that high and the low SDRT faces are per-
ceived differently. Values greater than 50% would suggest that
the low SDRT face is perceived as more attractive, physically
healthy and sex-typical, whereas values less than 50% would sug-
gest the opposite. For the ratings data, ratings of high SDRT faces
were subtracted from ratings of low SDRT faces. Thus, a positive
2 Additional statements comprised twenty items from the mini International
Personality Item Pool (Donnellan, Oswald, Baird, & Lucas, 2006) assessing the Big-5
dimensions of personality and a further four items assessing the likelihood that the
composite would imitate during social interactions. Four additional faces, which
investigated a separate research question, were also assessed on all statements.
number would suggest that low SDRT faces were rated as more
attractive, physically healthy or sex-typical, depending on the
question.

For both discrimination and ratings data, effects were estimated
using 95% confidence intervals (CIs) and measures of effect size
(Cumming, 2014). For the discrimination task, if the 95% CIs over-
lap with chance performance (50%), it will show that participants
do not perceive the high or the low SDRT faces as reliably different.
If the 95% CIs do not overlap with 50% it will show that the SDRT
faces are being perceived differently. For the ratings task data, a
difference to zero would show that ratings differ between high
and low SDRT faces. Cohen’s dz will be used to measure effect size
for group differences, which is calculated by dividing the average
difference by the standard deviation of the difference (Cohen,
1992; Lakens, 2013). Sample size was determined by the following
rule, which was to test at least 50 participants and stop data collec-
tion at the end of the semester. In a paired design, where partici-
pants complete both conditions, setting a two-tailed alpha level
of 0.01 and a correlation between repeat measurements of 0.7, a
sample size of 50 would provide 96% power to detect an effect a
Cohen’s d of 0.5 (calculated in ESCI; Cumming, 2012), which is con-
ventionally considered a medium effect size (Cohen, 1992).

Linear mixed effects models, as implemented in the lme4 pack-
age (http://CRAN.R-project.org/package=lme4) within R (http://
www.R-project.org/), were fit to the ratings data to determine
whether the predictive power of SDRT on attractiveness could be
accounted for by other likely candidate variables. In the baseline
models, attractiveness was the dependent variable and fixed
effects were fitted for physical health ratings, sex-typicality rat-
ings, stimulus sex (0 = male, 1 = female), participant sex (0 = male,
1 = female), and the sex-typicality by stimulus sex interaction
term. This was compared to a full model that also included SDRT.
Both models had identical random effects structures, with a ran-
dom intercept for each rater, and in line with the ‘‘keep it maximal”
approach (Barr, Levy, Scheepers, & Tily, 2013), a random slope of
physical health rating, sex-typicality rating, stimulus sex, typical-
ity ⁄ stimulus sex, and SDRT for each rater. All variables were de-
meaned and scaled and models were fit by maximum likelihood.
To evaluate model fit we examined Bayesian information criteria
(BIC) for both models and also present the results of a v2 test for
goodness of fit between the two models.
2.2. Results

2.2.1. Attractiveness judgements
Consistent with our prediction, low SDRT faces were chosen

above chance-level (50%; Fig. 2), both for female composites
91.38% [84.09, 98.67] Cohen’s dz = 1.463 and male composites,
63.79% [51.32, 76.27] Cohen’s dz = 0.28. In addition, low SDRT faces
were rated as more attractive than high SDRT faces, both for female
composites 1.67 [1.11, 2.22] Cohen’s dz = 0.78 and male composites
1.04 [0.5, 1.57] Cohen’s dz = 0.5 (Fig. 2).
2.2.2. Physical health and sex-typicality judgments
For judgements of physical health, low SDRT faces were chosen

above chance-level, both for female composites 76.29% [69.43,
83.16] Cohen’s dz = 0.99 and male composites, 66.81% [59.44,
74.18] Cohen’s dz = 0.59 (Supplementary Fig. 1A). In addition, low
SDRT faces were rated as more physically healthy than high SDRT
faces, both for female composites 0.59 [0.27, 0.92] Cohen’s
dz = 0.47 and male composites 0.44 [0.18, 0.69] Cohen’s dz = 0.45
(Supplementary Fig. 1C).
3 Cohen’s d is a measure of effect size with values of 0.2, 0.5 and 0.8 generally
considered small, medium and large effects, respectively (Cohen, 1992).
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Fig. 2. Attractiveness judgements across Experiments 1 and 2. For each experiment, the top panel shows stimuli that were used (low and high SDRT/Pure SDRT). Underneath
results from the forced-choice task and ratings task are displayed. For the forced-choice data, the percentage of times that the low SDRT composite was chosen is displayed. A
score higher than chance performance (50%) indicates a preference for low SDRT faces when judging attractiveness. For the ratings data, a difference score is presented (high
SDRT ratings subtracted from the low SDRT ratings). Thus, a positive score represents a higher rating for low than high SDRT faces.
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For sex-typicality judgments, low SDRT faces were chosen
above chance-level for female composites 84.48% [75.08, 93.88]
Cohen’s dz = 0.94, but not male composites 51.72% [38.75, 64.70]
Cohen’s dz = 0.03 (Supplementary Fig. 1A). In addition, low SDRT
faces were rated as more sex-typical than high SDRT faces for
female composites 1.32 [0.73, 1.90] Cohen’s dz = 0.58, but not male
composites 0.35 [�0.21, 0.92] Cohen’s dz = 0.16 (Supplementary
Fig. 1C).
2.2.3. Linear modelling
To investigate the features of attractiveness that may be driving

these effects we used linear mixed effects modelling. Model fit
statistics show that the model including SDRT outperformed the
baseline model, which did not include SDRT (BICBaseline = 640.31,
BICFull = 626.25; p < 0.001). Parameters for the full model can be
Table 1
Linear modelling results based on ratings data from Experiments 1 and 2.

Experiment 1

Term b rb

Intercept �0 21 0.10
Physical health 0. 18 0.07
Sex-typicality 0. 06 0.07
Participant sex 0.27 0.14
Stimulus sex 0. 27 0.06
Sex-typicality ⁄ stimulus sex 0.16 0.07
SDRT (Exp.1), Pure SDRT (Exp.2) �0.24 0.05

Note: The negative weighting for SDRT and Pure SDRT reflects the attractiveness advant
found in Table 1. The negative weighting for SDRT reflects the
attractiveness advantage for low variability over high.

2.3. Discussion

These findings provide the first evidence that reaction time
variability is visible to others and attractive. Moreover, variability
in reaction time made a unique contribution to perceptions of
attractiveness above and beyond the contribution made from per-
ceptions of physical health and sex-typicality, which have previ-
ously been associated with attractiveness judgments (Grammer &
Thornhill, 1994; Perrett et al., 1998). Thus, neither perceptions of
physical health nor sex-typicality fully capture the influence that
nervous system variability has on facial attractiveness.

From these findings, however, we cannot infer that variability
per se predicts attractiveness. Because RT is bounded with a
Experiment 2

t b rb t

�2.05 �0.09 0.10 �0.95
2.35 0.18 0.08 2.43
1.83 0.08 0.06 1.45
1.92 0.25 0.14 1.81
4.07 0.06 0.06 1.00
�2.16 �0.13 0.06 �2.34
�4.78 �0.16 0.03 �4.73

age for low variability over high variability.
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minimum but effectively no maximum, individuals with more
variable RTs will also have a higher ratio of slower responses
(Jensen, 1992; Klein, Wendling, Huettner, Ruder, & Peper, 2006).
As such, SDRT correlates with measures of speed, such as mean
and median RT, although these components of RT are dissociable.
For instance, median RT and SDRT predict individual difference
outcomes in distinct manners (Hultsch, MacDonald, & Dixon,
2002; Kirkeby & Robinson, 2005). Hence, there is evidence to
suggest speed and variability could have partially distinct relation-
ships with nervous system function and biological signalling,
which we investigate further in Experiment 2.
3. Experiment 2

3.1. Introduction

In this experiment we created new stimuli that dissociated
speed from variability. New composite face images were generated
by first regressing median RT from SDRT for each member of the
database. A new variable - pure SDRT - was created that indexed
variability with the effects of speed partialled out. We then ranked
individuals within the database on pure SDRT and made composite
morph images based on the highest and lowest individuals. A new
set of observers then performed the identical tasks as Experiment
1. If variability, specifically, is signalled through the face, then
attractiveness judgments should be associated with our new index
of low RT variability, which is independent to the influence of gen-
eral speed.
3.2. Method

3.2.1. Participants
Eighty participants who did not complete Experiment 1 (40

female, Mage = 19.9 years, SD = 2.7) had normal or corrected-to-
normal vision and provided written informed consent prior to data
collection.
3.2.2. Stimuli
Stimuli were produced using the same averaging procedure as

in Experiment 1. However, individual images were chosen based
on SDRT with median RT regressed out. To calculate SDRT scores
that were independent of median RT we followed the same steps
as in Experiment 1 in order to compute median RT for each partic-
ipant. Using the statistical program R, we then fit a regression
model to predict individual differences in SDRT using individual
differences in median RT. In Experiment 2, the measure of SDRT
was the residuals from this model, and thus is a measure of SDRT
that is independent of median RT. We call this measure pure SDRT
to denote that it is unrelated to general speed. We then ranked the
faces by residual SDRT and chose the top 15 and bottom 15 follow-
ing the same procedure as in Experiment 1. Thus, individuals with
high pure SDRT were not necessarily those who were also slower
overall. This said there was partial overlap between individuals
used to create composites of SDRT and pure SDRT. Of the 15 faces
in each composite, five individuals were in both composites for
females with low SDRT, seven for males with low SDRT, and eleven
for both the female and male high SDRT composites. The age range
of included individuals was narrow for female (low SDRT: 18–27;
high SDRT: 18–25) and male composites (low SDRT: 18–25; high
SDRT: 18–22) and did not differ between low and high composites
(female mean difference �0.40 years [�2.40, 1.60], male mean dif-
ference 1.00 years [�0.46, 2.46]).
3.2.3. Procedure and data analysis
The procedure and data analysis was identical to Experiment 1,

with only one change to the rating scale presented with statements
of sex-typicality. In Experiment 2, to improve clarity the rating scale
for judgments of sex-typicality was from ‘‘1 = not very sex-typical
i.e., feminine if a man and masculine if a woman” to ‘‘9 = very
sex-typical i.e., masculine if a man and feminine if a woman”.

3.3. Results

3.3.1. Attractiveness judgements
Consistent with our predictions, low pure SDRT composites

were chosen as more attractive than high (Fig. 2), both for female
faces 72.50% [62.65, 82.35], Cohen’s dz = 0.5, and male faces 82.50%
[74.12, 90.88], Cohen’s dz = 0.85. In addition, low pure SDRT faces
were rated as more attractive than high SDRT faces, both for female
composites 0.65 [0.23, 1.07] Cohen’s dz = 0.34 and male composites
0.63 [0.19, 1.06] Cohen’s dz = 0.31 (Fig. 2).

3.3.2. Physical health and sex-typicality judgments
For judgements of physical health, low pure SDRT faces were

not chosen above chance-level for female composites 54.69%
[47.93, 61.44] Cohen’s dz = 0.15 but they were chosen above
chance-level for male composites, 67.50% [61.19, 73.81] Cohen’s
dz = 0.61 (Supplementary Fig. 1B). In terms of ratings data, low
pure SDRT faces were not rated as more physically healthy than
high pure SDRT faces, both for female composites 0.09 [�0.14,
0.32] Cohen’s dz = 0.09 and male composites 0.13 [�0.19, 0.44]
Cohen’s dz = 0.09 (Supplementary Fig. 1D).

For sex-typicality judgments, low pure SDRT faces were chosen
above chance-level both for female composites 63.75% [53.15,
74.35] Cohen’s dz = 0.28, and male composites 61.25% [50.51,
71.99] Cohen’s dz = 0.23 (Supplementary Fig. 1B). In addition, low
pure SDRT faces were rated as more sex-typical than high pure
SDRT faces for female composites 0.65 [0.17, 1.13] Cohen’s
dz = 0.30, but not male composites 0.21 [�0.19, 0.62] Cohen’s
dz = 0.12 (Supplementary Fig. 1D).

3.3.3. Linear modelling
As Experiment 1, we used linear mixed effects modelling to

investigate the influence of RT variability on attractiveness judg-
ments in comparison to other factors such as health and sex-
typicality judgments. Model fit statistics indicated that the model
including pure SDRT outperformed the baseline model (BICBase-

line = 893.52, BICFull = 879.16; p < 0.001). Parameters for the full
model can be found in Table 1. As Experiment 1, the negative
weighting for pure SDRT reflects the attractiveness advantage for
low variability over high.

3.4. Discussion

The results of the second experiment demonstrate that even
without a contribution from general speed, variability in RT
predicts facial attractiveness. Further, pure SDRT made a unique
contribution to perceptions of attractiveness above and beyond
the contribution made from perceptions of physical health and
sex-typicality. This shows that neither perceptions of physical
health nor sex-typicality fully capture the influence that nervous
system variability has on facial attractiveness.

The first two experiments show that there is a consensus across
participants in judgements of attractiveness as a function of SDRT.
However, these judgements were based on two pairs of stimuli per
experiment (a male pair and a female pair). As such, although it is
unlikely, it is conceivable that all four pairs of stimuli differed
significantly in attractiveness because of chance variation in
attractiveness, rather than due to SDRT. Experiment 3 addressed
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this issue by measuring how frequently our method of stimulus
generation would produce stimuli that differ in attractiveness pref-
erences by chance.
4. Experiment 3

4.1. Introduction

In Experiment 3, we sought to estimate how frequently our
method of stimulus generation would produce stimuli that differ
in attractiveness preferences by chance. To do so, we generated
100 new random pairs of stimuli for male faces and 100 new ran-
dom pairs of stimuli for female faces. Each time we created a new
face pair, we randomly ordered our face database (without refer-
ence to SDRT) and created a new composite using the top 15 indi-
viduals and a new composite using the bottom 15 individuals. The
two composite images became a new pair of stimuli. We then
showed these new stimuli to a new set of participants and
recorded attractiveness preferences in a similar manner to Experi-
ments 1 and 2. This design, therefore, uses stimuli as targets of
analysis, rather than participants. Across 200 pairs of stimuli
(100 pairs per sex), we will be able to establish a baseline distribu-
tion of preferences. By referencing this baseline distribution, we
will then be able to calculate the likelihood of obtaining similar
results to our effects in Experiment 1 and 2 by chance alone. If
our results from Experiments 1 and 2 are likely by chance, we
should expect them to be close to the middle of the distribution.
If our results are relatively unlikely by chance, we should expect
them to be towards the tail of the distribution.

4.2. Method

4.2.1. Participants
Twenty-six participants who did not complete Experiment 1 or

2 (15 female, Mage = 21.3 years, SD = 2.2) had normal or corrected-
to-normal vision and provided written informed consent prior to
data collection.

4.2.2. Stimuli
Stimuli were produced using the identical averaging procedure

as in Experiments 1 and 2. However, the individual images within
each composite were chosen randomly, rather than according to
SDRT. To do so, for male and female faces separately, the individual
faces were first ranked in a random order. Then, the top 15 faces
were averaged to form one composite image, and the bottom 15
faces were averaged to form a second composite image. The resul-
tant two composite images became a face pair, which would later
Fig. 3. Distribution of attractiveness judgements in Experiment 3. Separately for male an
plotted. The effect plotted along the x axis is the difference score from chance (50%). Al
be used as a stimulus pair in the experiment. We then repeated
this process to create 100 face pairs per sex.
4.2.3. Procedure and data analysis
We used the same discrimination task that was used in Exper-

iments 1 and 2 and only assessed judgments of attractiveness. Par-
ticipants were shown each face pair twice in a random order with
each face image shown once on the left and once on the right.
Therefore, participants completed 400 trials in total (100 face pairs
per sex, each shown twice).

For each face pair, we arbitrarily labelled one of the images as ‘a’
and the other image as ‘b’. We then calculated the percentage of
times that image ‘b’ was selected as more attractive than ‘a’, as well
as the inverse preference (the percentage of times that ‘a’ was cho-
sen as more attractive than ‘b’). We calculated both directions of
the preference in order to avoid bias from arbitrary labelling the
images. If, for example, by chance, more faces labelled ‘a’ were per-
ceived as more attractive than ‘b’, then this would introduce
unwanted bias and skew the distribution towards ‘a’ more than
‘b’. By including the inverse judgment, we perfectly balance any
unwanted bias and still preserve the variance in judgements across
stimuli, which is the key parameter that we want to estimate. In
this way, we compiled a distribution of preference scores (200 val-
ues in total for each face sex). This distribution represents a base-
line distribution by showing how many stimulus pairs, by chance,
would produce a range of preference values.

In order to compare the effects from Experiment 1 and 2 to our
baseline distribution, we calculated where each of our effects from
Experiments 1 and 2 would be placed in terms of a percentile of the
baseline distribution. In addition, we calculated a probability state-
ment, which indexed the likelihood of generating a stimulus pair
with a preference score equivalent to the effects observed in Exper-
iments 1 and 2. As our original hypothesis was one-tailed (i.e., low
SDRT faces would be judged as more attractive than high SDRT
faces), we applied the same one-tailed logic to our new distribu-
tion. As such, we calculated the probability of obtaining a score
towards one-tail of our distribution. To assign a probability
value to each effect from our experiments, we converted mean
difference scores into z-scores by dividing by the mean difference
by the standard deviation of difference scores across all stimuli. We
then associated each z-score with a corresponding probability
statement (p value).
4.3. Results

The frequency distributions of preference scores across
randomly-generated male and female composite stimuli are
d female stimuli, the distribution of attractiveness judgements in Experiment 3 are
so plotted are the effects obtained in Experiments 1 and 2.



88 E.E. Butler et al. / Cognition 158 (2017) 81–89
plotted in Fig. 3. For comparison, the equivalent mean difference
scores from Experiments 1 and 2 are superimposed. In Experiment
1, the mean difference for female stimuli (41.37%) was equivalent
to the 100th percentile, and translated into a z score of 2.82 and a
probability of p = 0.002. The mean difference score for male stimuli
(13.39%) was equivalent to the 90th percentile, which translated
into a z score of 1.22 and a probability of p = 0.11.

In Experiment 2, the mean difference for female stimuli (22.5%)
was equivalent to the 92nd percentile, which translated into a z
score of 1.53 and p = 0.06. The mean difference for male stimuli
(32.5%) was equivalent to the 99th percentile, which translated
into a z score of 2.86 and p = 0.002.

In each experiment, male and female stimuli were selected
from entirely independent samples. Therefore, we can calculate
the probability of creating two stimuli that differed in attractive-
ness judgements per experiment as the compound probability
across male and female stimuli (male probability ⁄ female proba-
bility). In Experiment 1 the compound probability is p = 0.00022
and in Experiment 2 the compound probability is 0.00012.
4.4. Discussion

The results of the third experiment demonstrate that it is unli-
kely that our results in Experiments 1 and 2 were due to the chance
construction of stimuli that coincidentally differed in attractive-
ness. Indeed, the four stimuli from Experiments 1 and 2 were in
the 90th, 92nd, 99th or 100th percentile when referenced to our
baseline distribution of preferences. Furthermore, we had strong
a priori evidence to make a one-tailed directional hypothesis based
on the effects of SDRT. Therefore, it is statistically unlikely that by
chance alone we could have created stimuli with the magnitude of
attractiveness differences we found, and in the direction we
hypothesised.
5. General discussion

In sum, we show that the more reliable an individual’s nervous
system is, as evidenced by consistency of response time perfor-
mance, the more attractive they appear to others. In evolutionary
terms, the human species has invested heavily in the central ner-
vous system. Here we have shown that at least some aspects of this
investment are visible: visual facial traits are correlated with the
reliability of information processing, and these traits are perceived
as attractive. To our knowledge, this study is the first to demon-
strate links between visual social cues and nervous system reliabil-
ity in humans.

Attractiveness preferences have been repeatedly argued to be
adaptively significant and to guide mate-selection towards desir-
able, high-fitness others (Gangestad & Scheyd, 2005; Rhodes,
2006). For example, a variety of cues to health and developmental
stability are attractive (e.g., Simmons et al., 2004; Stephen et al.,
2009). Given the importance of CNS reliability and its relationship
with myriad cognitive, neural and health outcomes (MacDonald
et al., 2006, 2009), as well as its heritability (McLoughlin et al.,
2014; Saville et al., 2014), we suggest that visual cues to nervous
system reliability could also bias mate-choice towards high-
fitness partners. That is, a mate-choice based on attractiveness
could, in part, guide one towards potential partners with more
effective and efficient information processing systems and more
favourable health outcomes. Social selection in this manner would
produce benefits through connection to high-fitness others.

Importantly, reliability of information processing made a
unique contribution to attractiveness judgements, which was
above and beyond other factors that could guide mate-selection.
For instance, although reliability is correlated with physical health
and even mortality outcomes (MacDonald et al., 2008), we found
that effects of reliability on attractiveness were dissociable from
ratings of physical health. The attractiveness associated with relia-
bility is therefore distinguishable from the attractiveness attributa-
ble to physical health ratings. Similarly, although sexual
dimorphism has also been associated with physical health
(Rhodes, 2006), the attractiveness associated with reliability was
not a simple proxy for judgements of sex-typicality. Further, low
levels of fluctuating asymmetry (deviation from perfect symmetry
in bilateral features) has been frequently identified both as a fea-
ture of attractive faces, and as a potential consequence of healthy
development (Rhodes, 2006). However, all our stimuli were com-
posites of fifteen faces and are low in fluctuating asymmetry. Based
on our current findings, therefore, the observed relationship
between nervous system reliability and attractiveness preferences
cannot be explained by physical health, sexual dimorphism or fluc-
tuating asymmetry. One further factor to consider as a potential
explanatory variable is psychometric g, which has been shown to
be negatively correlated with reaction time variability (Larson &
Alderton, 1990; Schmiedek et al., 2007; but see Saville et al.,
2016 for a counterexample). Given the necessarily imperfect corre-
lation between reaction time variability and IQ, the effect of g on
facial appearance would have to be very large to account for the
whole of our effects. However, recent studies do not show strong
support for the claim that facial appearance provides valid cues
to IQ (Mitchem et al., 2015; Talamas, Mavor & Perrett, 2016). At
present, therefore, psychometric g is an unlikely explanation of
our effects. In sum, future research will be required to further
delineate the nature of the relationship between nervous system
reliability and facial cues, which is likely to be complex.

Finally, our results draw further attention to the potential
importance of studying the reliability of the human nervous sys-
tem through reaction time variability. Over fifty years ago, reaction
time variability was proposed to be a stable marker of psychophys-
iological function, rather than noise that should be ignored (Fiske &
Rice, 1955). More recently, a widespread range of effects, some of
which have profound consequences for health, have been associ-
ated with reaction time variability (MacDonald et al., 2006,
2009). To this we add that facial attractiveness is a cue to the reli-
ability of the underlying nervous system, and that facial attractive-
ness therefore reflects an important operating characteristic of the
human nervous system.
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